
Carving and Replaying Differential Unit
Test Cases from System Test Cases

Sebastian Elbaum, Member, IEEE, Hui Nee Chin,

Matthew B. Dwyer, Member, IEEE, and Matthew Jorde

Abstract—Unit test cases are focused and efficient. System tests are effective at exercising complex usage patterns. Differential unit

tests (DUTs) are a hybrid of unit and system tests that exploits their strengths. They are generated by carving the system components,

while executing a system test case, that influence the behavior of the target unit and then reassembling those components so that the

unit can be exercised as it was by the system test. In this paper, we show that DUTs retain some of the advantages of unit tests, can be

automatically generated, and have the potential for revealing faults related to intricate system executions. We present a framework for

carving and replaying DUTs that accounts for a wide variety of strategies and trade-offs, we implement an automated instance of the

framework with several techniques to mitigate test cost and enhance flexibility and robustness, and we empirically assess the efficacy

of carving and replaying DUTs on three software artifacts.

Index Terms—Automated test generation, carving and replay, regression testing.

Ç

1 INTRODUCTION

SOFTWARE engineers develop unit test cases to validate
individual program units (e.g., methods, classes, and

packages) before they are integrated into the whole system.
By focusing on an isolated unit, unit tests are not
constrained or influenced by other parts of the system in
exercising the target unit. This smaller scope for testing
usually results in more efficient test execution and fault
isolation relative to full system testing and debugging [1],
[20]. Unit test cases are also key components of several
development and validation methodologies, such as ex-
treme programming (XP) [2], test-driven development
(TDD) practices [3], continuous testing [36], and efficient
test prioritization and selection techniques [32].

Developing effective suites of unit test cases presents a
number of challenges. Specifications of unit behavior are
usually informal and are often incomplete or ambiguous,
leading to the development of overly general or incorrect
unit tests. Furthermore, such specifications may evolve
independently of implementations requiring additional
maintenance of unit tests even if implementations remain
unchanged. Testers may find it difficult to imagine sets of
unit input values that exercise the full range of unit
behavior and thereby fail to exercise the different ways in
which the unit will be used as a part of a system. An
alternative approach to unit test development, which does
not rely on specifications, is based on the analysis of a unit’s
implementation. Testers developing unit tests in this way
may focus, for example, on achieving coverage-adequacy

criteria in testing the target unit’s code. Such tests, however,
are inherently susceptible to errors of omission with respect
to specified unit behavior and may thereby miss certain
faults. Finally, unit testing requires the development of test
harnesses or the setup of a testing framework (e.g., JUnit
[19]) to make the units executable in isolation.

Software engineers also develop system tests, usually
based on documents that are available for most software
systems that describe the system’s functionality from the
user’s perspective, for example, requirement documents
and user’s manuals. This makes system tests appropriate
for determining the readiness of a system for release or its
acceptability to customers. Additional benefits accrue from
testing system-level behaviors directly. First, system tests
can be developed without an intimate knowledge of the
system internals, which reduces the level of expertise
required by test developers and makes tests less sensitive
to implementation-level changes that are behavior preser-
ving. Second, system tests may expose faults that unit tests
do not, for example, faults that emerge only when multiple
units are integrated and jointly utilized. Finally, since they
involve executing the entire system, no individual har-
nesses need to be constructed.

While system tests are an essential component of all
practical software validation methods, they do have several
disadvantages. They can be expensive to execute; for large
systems, days or weeks, and considerable human effort may
be needed for running a thorough suite of system tests [25].
In addition, even very thorough system testing may fail to
exercise the full range of behavior implemented by a
system’s particular units; thus, system testing cannot be
viewed as an effective replacement for unit testing. Finally,
fault isolation and repair during system testing can be
significantly more expensive than during unit testing.

The preceding characterization of unit and system tests,
although not comprehensive, illustrates that system and
unit tests have complementary strengths and that they offer

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. 1, JANUARY/FEBRUARY 2009 29

. The authors are with the Department of Computer Science and
Engineering, University of Nebraska, Lincoln, NE 68588.
E-mail: {elbaum, dwyer}@cse.unl.edu, {huinee, majorde}@gmail.com.

Manuscript received 28 Dec. 2007; revised 18 Aug. 2008; accepted 28 Aug.
2008; published online 2 Dec. 2008.
Recommended for acceptance by P. Frankl.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-2007-12-0356.
Digital Object Identifier no. 10.1109.TSE.2008.103.

0098-5589/09/$25.00 � 2009 IEEE Published by the IEEE Computer Society

a rich set of trade-offs. In this paper, we present a general
framework for the carving and replaying of what we call
differential unit tests (DUTs) which aim to exploit those
trade-offs. We termed them differential because their
primary function is to detect differences between multiple
versions of a unit’s implementation. DUTs are meant to be
focused and efficient like traditional unit tests, yet they are
automatically generated along with a custom test-harness
making them inexpensive to develop and easy to evolve. In
addition, since they indirectly capture the notion of
correctness encoded in the system tests from which they
are carved, they have the potential for revealing faults
related to complex patterns of unit usage.

In our approach, DUTs are created from system tests by
capturing components of the exercised system that may
influence the behavior of the targeted unit and that reflect
the results of executing the unit; we term this carving

because it involves extracting the relevant parts of the
program state corresponding to the components exercised
by a system test. Those components are automatically
assembled into a test harness that establishes the prestate of
the unit that was encountered during system test execution.
From that state, the unit is replayed and the resulting state is
queried to determine if there are differences with the
recorded unit poststate.

Ideally, a set of DUT will

1. retain the fault detection effectiveness of system tests
on the target unit,

2. execute faster or use fewer resources than system
tests, and

3. be applicable across multiple system versions.

In addition, for program changes that are behavior

preserving, effective DUTs will

4. report few differences that are not indicative of
actual differences in system test results.

For changes that are intentionally behavior modifying, DUTs
will, of course, detect differences. Rather than simply
indicating that a difference is detected, our approach is
able to provide a fine-grained view of the differences
through the unit test outcomes. Using this information,
developers will be able to quickly spot the effect of their
intended modifications and to see where errors have been
introduced.

In this paper, we investigate DUT carving and replay
(CR) techniques with respect to the four numbered criteria.
Through a set of controlled empirical studies within the
context of regression testing, we compare the cost and
effectiveness of system tests and carved unit tests. The
results indicate that carved test cases can be as effective as
system test cases in terms of fault detection, but much more
efficient in the presence of localized changes. When
compared against emerging work on providing automated
extraction of powerful unit tests from system executions,
[26], [29], [34], [41], the contributions of this paper are

. a framework for automatically carving and replay-
ing DUTs that accounts for a wide variety of
implementation strategies with different trade-offs,

. a novel state-based automated instantiation of the
framework for CR at a method level that offers a
range of costs, flexibility, and scalability, and

. an empirical assessment of the efficiency and
effectiveness of CR of DUTs on multiple versions
of three Java artifacts.

We note that this paper is a revised version of an earlier
paper presented at the Foundations of Software Engineer-
ing Symposium 2006 [17] that includes various framework
extensions presented in the next section, a more complete
and detailed implementation presented in Section 3, and
additional assessments described in Section 4. The related
work is summarized in Section 5, and we outline several
directions for future work in Section 6.

2 A FRAMEWORK FOR TEST CARVING AND REPLAY

Java programs can have millions of allocated heap instances
[15] and hundreds of thousands of live instances at any
time. Consequently, carving the raw state of real programs
is impractical. We believe that cost-effective CR-based
testing will require the application of multiple strategies
that select information in raw program states and use that
information to trade a measure of effectiveness to achieve
practical cost. Strategies might include, for example, carving
a single representative of each equivalence class of program
states or pruning information from a carved state on which
a method under test is guaranteed not to depend. The space
of possible strategies is vast and a general framework for
CR testing will aid in exploring possible cost-effectiveness
tradeoffs in the space of CR testing techniques.

For the purposes of explaining our framework, we
consider a Java program to be a state transition system.
At any point during the execution of a program, the program
state S can be defined conceptually as all of the values in
memory. A program execution can be formalized either as a
sequence of program states or as a sequence of program
actions that cause state changes. A sequence of program
states is written as � ¼ s0; s1; . . . , where si 2 S and s0 is the
initial program state as defined by Java. A state siþ1 is
reached from si by executing a single action (e.g., bytecode).
A sequence of program actions is written as ��. We denote
the final state of an action sequence sð��Þ.

Regardless of how one develops, or generates, a unit test,
there are four essential steps:

1. identify a program state from which to initiate
testing,

2. establish that program state,
3. execute the unit from that state, and
4. judge the correctness of the resulting state.

In the rest of this section, we define a general framework that
allows different strategies to be applied in each of these steps.

2.1 Basic Carving and Replaying

Fig. 1 illustrates the general CR process. Given a system test
case stx, carving a unit test case DUTxm for target unit m
during the execution of stx consists of capturing spre, the
program state immediately before the first instruction of an
activation of method m, and spost, the program state
immediately after the final instruction of m has executed.

30 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. 1, JANUARY/FEBRUARY 2009

The captured pair of states ðspre; spostÞ defines the DUT case
for method m, denoted DUTxm. States in this pair can be
defined by directly capturing a pair of states in � or by
recording the cumulative effects of sequences of program
actions ��pre and ��post, i.e., recording sð��preÞ and sð��postÞ. A
CR testing approach is said to be state based if it records
pairs ðspre; spostÞ and action based if it records pairs
ð��pre; ��postÞ. We note that action-state hybrid CR approaches
that record, for example, pairs of actions sequences and
states ð��pre; spostÞ may also be useful.

In practice, it is common for a method m to undergo
some modification (e.g., to m0) over the program lifetime. To
efficiently validate the effects of a modification, we replay
DUTxm on m0. Replaying a DUT for a method m0 requires
the instantiation of spre by either loading the state spre into
memory or by executing ��pre, depending on how the state
was carved. From this state, execution of m0 is initiated and
it continues until it reaches the point corresponding to the
carved spost. At that point, the current execution state s0post is
compared to spost. If the post states are the same, we can
attest that the change did not affect the behavior of the
target unit exercised by DUTxm. However, if the change
altered the semantics of m, then further processing will be
required to determine whether the alteration matches the
developer’s expectations (we discuss the support that
provided by our implementation of CR in Section 2.4).

This basic CR approach suffers from several fundamen-
tal limitations that must be addressed in order to make CR
cost-effective. First, the proposed basic carving procedure is
at best inefficient and likely impractical. It is inefficient
because a method may only depend on a small portion of
the program state, thus storing the complete state is wasted
effort. Furthermore, two distinct complete program states
may be identical from the point of view of a given method,
thus carving complete states would yield redundant unit
tests. It is impractical because storing the complete state of a
program may be prohibitively expensive in terms of time
and space. Second, changes to m may render DUTxm

unexecutable in m0. Reducing the cost of CR testing is
important, but we must produce DUTs that are robust to
various types of changes so that they can be executed across
a series of system versions in order to recover the overhead
of carving, and provide further support to analyze the
reasons behind DUTs detected differences. Finally, the use
of complete poststates to detect behavioral differences is not
only inefficient but may also be too sensitive to behavior
differences caused by reasons other than faults (e.g., fault
fixes, algorithm improvements, and internal refactoring)
leading to the generation of brittle tests. The following
sections address these challenges.

2.2 Improving CR with Projections

We focus CR testing on a single method by defining
projections on carved prestates that preserve information
related to the unit under test and are likely to provide
significant reduction in prestate size.

State-based projections. A state projection function � :
S ! S preserves specific program state components and
elides the rest. For example, a state projection may preserve
the scalar fields in the object, a subset of the references to
other objects, or a combination of both. Underlying many
useful state projections is the notion of heap reachability.
An object o0 is reachable in one dereference from object o if
the value of some f ie ld f re ferences o0; l e t
reachðoÞ ¼ fo0j9f2FieldsðClassðoÞÞo:f ¼ addressðo0Þg, w h e r e
FieldsðcÞ denotes the set of (nonstatic) fields defined for
class c and Class returns the class of an object.

Objects reachable through any chain of dereferences up
to length k from o are defined by using the iterated
composition of this binary relation,

S
1�i�k reach

iðoÞ; as a
notational convenience, we will refer to this as reachkðoÞ.
The positive transitive closure of the relation, reachþðoÞ,
defines the set of all reachable objects from o in one or more
dereferences.

To promote replay capabilities, state-based CR testing
approaches at the method level should use projections that
retain at most the set of heap objects reachable from a given
calling context. That set includes heap objects reachable
through the receiver object, the call’s parameters, static fields
within the method’s class, and public static fields from other
classes. More formally, given a call r:mðp1; . . . ; pnÞ, the
reachable objects from the calling context include

1. reachþðrÞ,
2. foj9i21...n o 2 reachþðpiÞg,
3. foj9f2FieldssðClassðrÞÞ o 2 reachþðfÞg where Fieldss is

the set of static fields for a class and reach has been
extended to fields, and

4. foj9c 6¼ClassðmÞ 9f2FieldspsðcÞ o 2 reachþðfÞg w h e r e
Fieldsps is the set of public static fields for a class
and Class is the class declaring a given method.

This projection is lossless for reasoning about a method
invocation since it retains all of the information in spre that
could possibly be accessed by the call to m.

More efficient projections might consider a subset of the
heap elements captured by the calling context reachable
projection. Some of these projections will use a notion of
distance to determine what heap elements to preserve (e.g.,
retain all the heap elements that may be reached in up to

ELBAUM ET AL.: CARVING AND REPLAYING DIFFERENTIAL UNIT TEST CASES FROM SYSTEM TEST CASES 31

Fig. 1. Carving and replay process.

k dereferences) while others may aim to maintain just the
basic heap content and the heap structure (e.g., retain only
the values of reference fields, thereby eliminating all scalar
fields, which would maintain the heap shape of a program
state). Some projections will determine the portion of the
state to preserve ahead of time through some form of source
code analysis (e.g., side-effects analysis or reachability
analysis), while others will make that determination at
runtime (e.g., retain the heap elements reachable or read
during execution).

The range of projections makes it possible to trade
robustness for reduction in carving cost and replaying time
by defining projections that eliminate more state informa-
tion. Section 3.2 presents five projections that exercise this
trade-off.

Action-based projections and transformations. Projec-
tions can also operate on sequences of program actions,
�� : ��! ��, to distill the portion of a program run that affects
the prestate of a unit method. Unfortunately, a purely
action-based approach to state capture will not work for all
Java programs. For example, a program that calls native
methods does not, in general, have access to native method
instructions. To accommodate this, we can allow for
transformation of actions during carving, i.e., replace one
sequence of instructions with another. Transformation
could be used, for example, to replace a call to a native
method with an instruction sequence that implements the
side effects of the native method. More generally, one could
design an instance of �� that would replace any trace portion
with a summarizing action sequence.

Applying projections. Fig. 2 illustrates two potential
applications of projections on DUTs: test case reduction and
test cases filtering.

Reduction aims at thinning a single carved test case by
retaining only the projected prestate (in Fig. 2, for example,
the projection on spre carved from DUTxm leads to a smaller
spre). Reducing a DUT’s prestate results in smaller space
requirements and, more importantly, in quicker replay
since loading time is a function of the prestate size. For
example, a method like totalPages in Fig. 3 that returns the
int field pages presents a clear opportunity to benefit from
a reduction that retains just the scalar fields. Such reduction
would avoid the need to load some potentially large objects
such as the info hashtable, making replay faster. Depending
on the type of projection, such gains may be achieved at the
expense of additional analysis and carving time (e.g., using
a more precise but expensive analysis to determine what to

carve), or reduced fault detection power (e.g., a projection
may discard an object that was necessary to expose the
fault). Furthermore, test executability may be sacrificed as
well when, for example, the data structures needed to
successfully instantiate the object in memory become
unavailable due to applied projections. In Fig. 3, the
relevant program state for getAuthorName includes the field
info of type java.util.Hashtable from the EnglishBook
class, which stores the type of information for a particular
book (such as publication date and author name). If the
same scalar-only type reduction were applied, then DUTs
for getAuthorName would not be replayable because the info
field would be missing from the prestate. Under this
circumstance, an alternative projection to enable reduction
could aim for carving the fields of the parts of the hashtable
just touched during the execution. The key is to identify the
suitable level of reduction that would maximize efficiency,
fault detection, and test executability at the same time.

Filtering aims at removing redundant DUTs from the
suite. Consider a method that is invoked during program
initialization and is independent of the program para-
meters. Such a method would be exercised by all system
tests in the same way and likely result in multiple identical
DUTs for that particular method. Filtering by comparing
complete prestates could remove such duplicate tests,
retaining just the DUTs that have a unique spre. Consider
a simple accessor method with no parameters that returns
the value of a scalar field. If this method is invoked by tests
from different prestates, then multiple DUTs will be carved,
and filtering based on complete prestates will retain all of
the DUTs even though they exercise the same behavior. For
this method, filtering based on a projection that preserves
just the subset of a prestate that is reachable from this in
one dereference may remove multiple redundant DUTs (in
Fig. 2, �ðspreÞ for DUTxm and for DUTzm are identical so one
of them can be removed). Clearly, in some cases, over-
aggressive filtering may result in a lower fault detection
capability since we may discard a DUT that is different and,
hence, potentially valuable.

Note that, contrary to test case reduction, while filtering
may sometimes only consider subsets of program states to
judge equivalence, the stored program states are not
modified; consequently, test executability is preserved since
the DUTs that are retained are complete. In practice,
however, reduction and filtering are likely to be applied
in tandem such that reduced tests are then filtered or
filtered tests are then reduced (without necessarily using
the same projection for reduction and filtering).

32 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. 1, JANUARY/FEBRUARY 2009

Fig. 2. Application of projections.

Fig. 3. Reduction and test executability.

2.3 Strategies to Manage Replay Anomalies

We have discussed how overly aggressive reductions can
impair replay. Similarly, certain method changes such as

modifications in a method’s signature or key data structures
may prevent a DUT from correct replay. For example,
consider the scenario shown in Fig. 4 where we carved

DUTxBook from v0 of the Book class. Replaying the
constructor for Book with the carved DUTxBook in v1

encounters an error resulting from incompatible types in
the words field between versions. Effective CR testing must

detect failures arising from carving limitations, differentiate
them from regular application failures, and find ways to use
this information to further guide the testing process and

ensure the coverage of the target method. The detection and
differentiation steps are implementation specific and are
discussed in the following section, while this section focuses

on what to do once a DUT fails to replay.
When DUTxm cannot be replayed, one could replay the

system test case stx on the new version of the software,
while carving a new DUTxm to replace the one invalidated

by the program modification. The idea here is to use the
DUT failure as a trigger for the system test case execution to
ensure the proper coverage of the target method by the

system test while creating DUTs for the future. An
alternative approach that avoids system test case execution
and immediate recarving takes advantage of the existing

body of executable DUTs on other methods that exercise the
target method. For instance, in Fig. 4, replaying the DUTs
for the addBook method of the Library class would exercise

the Book constructor (through the invocation of new

Book(title, length)) without the explicit loading of DUTxBook.
This approach is appealing because it eliminates the

immediate need for recarving while still enabling the
localized execution of a changed DUT. However, it does
not account for the potential existence of multiple callers

and the possibility that some callers may not be replayable
themselves.

When DUTxm fails, we can identify a set of DUTs whose
execution reaches DUTxm’s prestate; we call such a set a
replay frontier of DUTxm. There may be many replay
frontiers for a given DUT. Selection of an appropriate
frontier is guided by three criteria: 1) the ability of the
frontier to successfully replay the behavior exercised in
DUTxm, 2) the cost of executing the frontier, and 3) the
localization of defect detection relative to DUTxm.

At one extreme, DUTxmain, i.e., the main program,
comprises a replay frontier for any DUT. Intuitively, it
maximizes replayability, since it is essentially an execution
of system test case stx. On the other hand, this frontier will
be more costly to execute than other frontiers and will
provide a less focused characterization of detected defects.
At the other extreme, one could identify the set of DUTs
that directly invoke method m corresponding to the failed
DUT. Executing these DUTs will provide localized replay of
the behavior of DUTxm and may be significantly less
expensive than DUTxmain. This frontier is more likely to
exhibit replay anomalies due to the proximity to the change
(e.g., when the caller and callee are methods in the same
changed class).

In Section 3.1, we explore a family of strategies that
attempt to balance the three frontier selection criteria.

2.4 Adjusting Sensitivity through Differencing
Functions

The basic CR testing approach described earlier compares a
carved complete poststate to a poststate produced during
replay to detect behavioral differences in a unit. The use of
complete poststates is both inefficient and unnecessary for
the same reasons as outlined above for prestates. While we
could use comparison of poststate projections to address
these issues, we believe that there is a more flexible solution
that could also help control DUTs’ sensitivity to changes.

Method unit tests are typically structured so that, after a
sequence of method calls that establish a desired prestate,
the method under test is executed. When it returns,
additional method calls and comparisons are executed to
implement a pseudo-oracle. For example, unit tests for a red-
black tree might execute a series of insert and delete calls
and then query the tree height and compare it to an
expected result to judge partial correctness. We allow a
similar kind of pseudo-oracle in CR testing by defining
differencing functions on poststates that preserve selected
information about the results of executing the unit under
test. These differencing functions can take the form of
poststate projections or can capture properties of poststates,
such as tree height or size, and consequently may greatly
reduce the size of poststates while preserving information
that is important for detecting just the meaningful beha-
vioral differences.

We define differencing functions that map states to a
selected differencing domain, dif : S ! D. Differencing in CR
testing is achieved by evaluating difðspostÞ ¼ difðspost0 Þ. State
projection functions are simply differencing functions where
D ¼ S. In addition to the reachability projections defined
in the previous section, projections on unit method return
values, called return differencing, and on fields of the unit
instance referenced by this, called instance differencing, are
useful since they correspond to techniques used widely in
hand-built unit tests.

ELBAUM ET AL.: CARVING AND REPLAYING DIFFERENTIAL UNIT TEST CASES FROM SYSTEM TEST CASES 33

Fig. 4. An example of replay failure.

A central issue in differential testing is the degree to
which differencing functions are able to detect changes that
correspond to faults while masking implementation
changes. We refer to this as the sensitivity of a differencing
function. Clearly, comparing complete poststates will be
highly sensitive, detecting both faults and implementation
changes. A projection function that only records the return
value of the method under test will be insensitive to
implementation changes while preserving some fault
sensitivity. Note also that these differencing functions
provide different incomplete views of the program state.
Their incompleteness reduces cost and may add some level
of insensitivity to changes in the implementation, but it
could also reduce their fault detection effectiveness. We
address this by allowing for multiple differencing functions
to be applied in CR testing which has the potential to
increase fault sensitivity, without necessarily increasing
implementation change sensitivity. For example, using a
pair of return and instance differencing functions allows
one to detect faults in both instance field updates and
method results, but will not expose differences related to
deeper structural changes in the heap. Fault isolation
efficiency could also be enhanced by the availability of
multiple differencing functions since each could focus on a
specific property or set of program state components that
will help developers focus their attention on a potentially
small portion of program state that may reflect the fault.

DUTs can also be refined to increase their sensitivity in the
temporal dimension by capturing sequences of poststates
ðspre; �postÞ that capture intermediate points during the

execution of the method under test. Such poststate sequences
can be valuable to support fault isolation and debugging
efforts since they provide additional observability on
program states generated during the method execution.
Fig. 5 illustrates a scenario in which a DUT begins execution
of m at spre. Conceptually, during replay, a sequence of
poststates is differenced with corresponding states at
intermediate states of the method under test. For example,
at point 1, the test compares the current state to the
captured spost1, similarly at points 2 and 3 the pre and
poststates of the call out of the unit are compared.

Using a sequence of poststates requires that a correspon-
dence be defined between locations in m and m0. Corre-
spondences could be defined using a variety of approaches,
for example, one could use the calls out of m and m0 to
define points for poststate comparison (as is illustrated in
Fig. 5) or common points in the text of m and m0 could be
detected via textual differencing. Fault isolation information
is enriched by using multiple poststates, since if the first
detected difference is at location i, then that difference was
introduced in the region of execution between location i� 1
and i. Of course, storing multiple poststates may be
expensive so its use can only be advocated to narrow the
scope of code that must be considered for fault isolation
once a behavioral difference is attributed to a fault.

3 INSTANTIATING THE FRAMEWORK

In this section, we describe the architecture and implemen-
tation details of a state-based instantiation of the framework
for the Java programming language. Section 5 discusses
alternative CR implementations.

3.1 System Architecture

Fig. 6 illustrates the architecture of the CR infrastructure.
The carving activity starts with the Carver class which takes
four inputs: the program name, the target method(s) m
within the program, the system test case stx inputs, and the
reduction and filtering options.

34 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. 1, JANUARY/FEBRUARY 2009

Fig. 5. Differencing sequences of poststates.

Fig. 6. CR tool architecture.

Carver utilizes a custom class loader CustomLoader (that
employs the Byte Code Engineering Library (BCEL) [14]) to
incorporate instrumentation code into the program. We
instrument the bytecode for all loaded program classes
except the ones that are in the Java API, part of the CR tool,
and members of third-party libraries used by the tool. The
instrumentation uses the singleton ContextFactory class to
store pre and poststates of program methods at the entry and
exit points of the methods (including exceptional exit points
forced by throw instructions in m or methods called by m).
Every execution of a method that is targeted for CR testing
will lead to, at least, two invocations of the ContextFactory: one
at the entry point of the method to store spre and one at the exit
point of the method to store spost.

As discussed earlier, carving the entire state of the
program is impractical, therefore the ContextFactory utilizes
ContextBounding to determine the parts of the program state
to be stored during carving based on the chosen projections
to perform reduction and filtering. Once the carving scope
has been determined, ContextFactory utilizes an open source
package, XStream [40], to perform the serialization to XML
of the heap objects in the defined scope. Finally,
ContextFactory stores the serialized program states. By
default, ContextBounding applies the most conservative
projection: an interface reachability projection (as described
in Section 2.2), and filters DUTs based on that projection.
Several other projections and lossy filters are available and
introduced in the upcoming sections.

While XStream is a powerful object serialization package,
by default it does not serialize a class’s static fields.
However, to truly replay a method with the prestate that
it encountered during a system test, we need to establish the
values of static fields as well as instance fields since both
influence the execution of the method. Fortunately, XStream
allows a high level of customization. We implemented a
custom extension for XStream that enables the serialization
of and the application of projections to static fields by
retrieving their contents including transitively reachable
objects, serializing it using XStream, and placing the
resulting XML in a special tag which we introduced to
contain static fields. This XStream extension also takes care
of deserializing the static fields and restoring them upon
full object deserialization.

We have implemented two options for storing poststates:
1) complete poststate descriptions encoded in an XML
format and 2) unique fingerprints of poststates defined by
hashing of XML encodings. The complete representation is
helpful in determining which part of the poststate was
affected by the program changes, but carving execution
time and storage requirements may be higher. Fingerprint
storage allows for more efficient carving, storage, and
difference detection, but does not allow for a detailed
characterization of state differences.

The other primary CR component, Replay, shares many of
the core classes with Carver (CustomLoader, ContextBounding,
ContextFactory) and works in a similar manner. To establish
the desired prestate on which to invoke m0, Replay utilizes
the ContextLoader class to obtain and load the carved spre of
m, using XStream to deserialize the stored state. After that,
m0 is invoked. Similar to Carver, Replay instruments the class
of m0 and utilizes the ContextFactory, but only to store spost

after m0 is invoked. Once m0 has been replayed, we use Dif ,
the differencing mechanism, to compare the spost of m0

generated during Replay with the carved spost of m to
determine whether the changes in m0 resulted in a
behavioral difference. Currently, we have fully automated
the differencing functions on return values, instance fields,
state fingerprints, and complete XML state encodings which
include static fields.

If Replay fails for m0, the ReplayAnomalyHandler will begin
the process of exploring the replayable frontier of m0. The
current implementation to explore the frontier can use call
graphs or the DUTs built-in caller information to guide the
replay process in the presence of an anomaly. These two
mechanisms trade carving efficiency for replay efficiency.
Keeping track of the DUT caller information requires an
additional tracking method within ContextFactory that
maintains a DUT call stack which increases carving over-
head and storage per DUT. However, such information
often leads to a more precise determination of what DUT
needs to be replayed in the presence of a replay failure,
which can cut down replay time.

Each generated DUT is composed of two files: prestate,
which includes the objects reachable through the method’s
parameters or the class fields, and poststate, which contains
the reachable objects and return value for the method. DUTs
are organized through a directory structure of four levels that
includes a level for system tests, a level for classes, a level for
methods, and one for DUTs. The DUTs are assigned an
identification hashcode based on their corresponding meth-
od signature as well as the information identifying its caller
DUT. Fig. 7 provides an example of DUT file contents for the

ELBAUM ET AL.: CARVING AND REPLAYING DIFFERENTIAL UNIT TEST CASES FROM SYSTEM TEST CASES 35

Fig. 7. DUT file contents and directory structure.

method editHeight of the class Student and illustrates the DUT
naming scheme described above.

3.2 Implemented Projections

Here, we describe the types of projections implemented in
the CR tool. These offer a degree of control over the carved
test cases that can be generated.

Interface k-bounded reachable projection. The interface
k-bounded reachable projection for a method invocation
r:mðp1; . . . ; pnÞ defines the set of preserved objects to
include only those reachable from the target method class
via dereference chains of length up to k, i.e., reachkðrÞ [
foj9i21...no 2 reachkðpiÞg [foj9f2FieldssðClassðrÞÞ o 2 reachkðfÞg.
The intuition behind this projection is that DUTs that have
identical heap structure up to depth k may exercise m in a
similar manner and this could lead to significant filtering
(e.g., a method working on link lists may only need to access
the first k elements in a list to exhibit all of its interesting
behavior). Using small values of k can greatly reduce the size
of the recorded prestate and, in turn, this can lead to more
DUTs being judged equivalent. For many methods, a small
value of k will have no impact on unit-test robustness. For
example, a value of 1 would suffice for a method whose only
dereferences are accesses to fields of this.

If a method changes to access data along a reference
chain of length greater than the k set during carving, then
the DUTs carved using the k-bounded projection would
have retained insufficient data about the prestate to allow
replay. Our implementation dynamically detects this
situation and raises a custom exception to indicate a
replay anomaly. During state storage, the heap is
traversed and objects that are referenced at a depth of
kþ 1, but no shallower, are marked. For each such
marked objects, a sentinel attribute is introduced into the
prestate XML encoding. When the prestate is deserialized,
every object created from XML with a sentinel attribute is
added to a Collection. Instrumentation is added after
all GETFIELD instructions to check for the membership of
the requested object in the Collection. If the object is a
member, the instrumentation throws a SentinelAccess

Exception. This prevents NullPointerExceptions
from being thrown during sentinel object accesses which
could be confused with normal application exceptions. It
also prevents invalid replay results which would be
caused by a program handling a null value and
continuing execution when the value would not normally
have been null. These SentinelAccessExceptions are
one mechanism for identifying replay anomalies and
triggering the ReplayAnomalyHandler.

May-reference reachable projection. The may-reference
reachable projection uses a static analysis that calculates a
characterization of the objects that may be referenced by a
method activation either directly or through method calls.
This characterization is expressed as a set of regular
expressions of the form: pf1 . . . fnðFþÞ? which captures an
access path that is rooted at a parameter p and consists of
n dereferences by the named fields fi (e.g., p.next.

next.val). If the analysis calculates that the method may
reference an object through a dereference chain of length
greater than n, the optional final term is included to capture
objects that are reachable from the end of the chain through
dereference of fields in the setF . In general,F is calculated on

a per-type basis whereF ðcÞ is the subset of fields of class c that
may be referenced by an execution of the method. Let
reachF ðoÞ ¼ fo0j9f2F ðClassðoÞÞo:f ¼ addressðo0Þg c a p t u r e
reachability restricted to the subset of fields encoded in F ;
reachf denotes reachability for the singleton set ffg. For a
regular expression of the form pf1 . . . fm, where m � n, we
construct the set: reachf1

ðpÞ [. . . [reachfmð. . . ðreachf1
ðpÞÞÞ,

since we want to capture all references along the path. If the
regular expression ends with the term Fþ, then we union an
additional term of the form reachþF ðreachfmð. . . ðreachf1

ðpÞÞÞÞ.
This projection can reduce the size of carved prestates while
retaining arbitrarily large heap structures that are relevant to
the method under test.

We implement our projection using the context-sensitive
interprocedural read-write analysis implemented in Indus
[28]. This analysis handles all of the complexities of Java in
its alias analyses including the safe approximation of read-
write operations performed in libraries. We configure this
analysis to calculate l-bounded access path and then
generate regular expressions that capture the set of all
possible referenced access paths up to length l; we use a
default of l ¼ 2. When traversing the program for serial-
ization using XStream, we simultaneously keep track of all
regular expressions and mark only those objects that lie on a
defined access path for storage in XML. Note that the l-
bounding controls the precision of the static analysis and
does not limit the depth of the prestate carving, conse-
quently no sentinel objects are introduced with this
projection. This analysis is also capable of detecting when
a method is side-effect free and in such cases the storage of
poststates is skipped since method return values completely
define the effect of such methods.

Touched-carving projection. The touched-carving projec-
tion utilizes dynamic information about all the fields that
were read or written during the method execution (or the
execution of methods called from that target method) to
decide which parts of the program states to store. Our
implementation of this projection starts with the instru-
mentation utilized by the interface k-bounded reachable
projection, and it incorporates additional instrumentation to
mark the parts of the heap referenced by the instrumented
methods. During carving, the additional instrumentation
helps to identify referenced fields and stores them. Fields
that are not referenced are stored up to depth of k to ensure
a level of robustness in the event of method changes that
result in references to additional fields.

There are two implementation aspects of this projection
worth mentioning. First, given that we cannot know which
fields will be read or written to prior to the execution of a
method, we first store the method’s complete spre in
memory, then execute an instrumented version of the
method that records all referenced fields for storage in the
DUT. This record is then used to write the XML structure or
fingerprint to disk. Second, DUTxm’s spre needs to store the
fields referenced by m and also the fields referenced by all
the methods m calls. To do this, we maintain object graphs
during carving. Fig. 8 illustrates how this works for the
class Person when a call to checkGrowth is made. The gray
areas indicate fields that were referenced either directly or
indirectly by the method. Fields in light gray were read,

36 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. 1, JANUARY/FEBRUARY 2009

fields in dark gray were written, and fields in both were
read and written. In the method checkGrowth, the field check
is both read and written in the first line. The fields w, h,
w:value, and h:value are read indirectly through calls to
isTaller and isHeavier.

Clustering projection. The clustering projection
attempts to identify a set of similar DUTs,
DUTxcallee;1; DUTx!callee;2; . . . , that result from the repeated
invocation of callee from within the same DUT, DUTxcaller,
of method caller. Fig. 9 illustrates an instance where this
projection may be very effective. Every invocation of
printbook results in a DUTxprintbook and one DUT for incIndex
for each iteration of the while loop, i.e., length

DUTsxincIndex. Consequently, there may be many DUTs
generated for incIndex and the added value of those DUTs
may be limited. Instead of carving such DUTs, through the
clustering projection, we keep track of the number of
invocations of incIndex from the context defined by
DUTxprintBook. When that number exceeds a predetermined
threshold, we replace the incIndex DUTs with a reference to
DUTxprintbook which enables their indirect replay. This
projection amounts to a heuristic for identifying a replay
frontier and exploiting that frontier to filter DUTs lower in
the call hierarchy.

Normalizing transient data. Projections seek to retain
relevant differences between states while eliminating data
that is regarded as irrelevant. It is possible to eliminate
differences, without eliminating data by normalizing values,
for example, setting all java.util.Date fields to a fixed
value, or fixing the seed in java.util.Random. In most
Java programs, there are a wealth of data types that have
transient data. We have identified a number of those types
and applied normalizing value transformations. For exam-
ple, autoflushing Flushable implementations can be
flushed at different times and differences in the contents
of the backing Buffer objects, char[]s or byte[]s can
occur under normal circumstances. To normalize buffer
array contents, we check for Flushable types and Buffer

types before serialization. If a Flushable type is found, the
flush method is called, if a Buffer type is found, the
clear method is called. Since the implementations for
flush and clear do not truly clear the backing array (they
just reinitialize a pointer), we use reflection to get all fields
with type char[] or byte[] and overwrite them with
zeros. Then, serialization continues as normal. This process
guarantees that variable buffer contents are consistent
across all poststates of multiple executions.

3.3 Toolset Limitations

The current CR toolset is robust in its support of the Java
language and commonly used libraries and frameworks,
but it has two limitations.

Threading limitations. Our toolset was originally devel-
oped for sequential programs and the instrumentation
strategy we employ in the Carver is not thread safe. Rather
than employ a basic locking strategy in instrumentation to
assure thread-safety, we have deferred the treatment of
thread-safety to pursue a more complex and potentially
more efficient solution that avoids locking overhead in
accessing Carver data structures. We note that, for replay,
thread safety is not an issue.

Serialization limitations. Our approach requires the
ability to save and restore object data representing the
program state. However, the Java java.io.Serializ-

able interface limits the type of objects that can be
serialized. For example, Java designates file handler objects
as transient (nonserializable) because it reasonably assumes
that a handler’s value is unlikely to be persistent and
restoring it could enable illegal accesses. The same limita-
tions apply to other objects, such as database connections
and network streams. In addition, the Java serialization
interface may impose additional constraints on serializa-
tion. For example, it may not serialize classes, methods, or
fields declared as private or final in order to avoid potential
security threats. Fortunately, we are not the first to face
these challenges. We found multiple serialization libraries
that offer more advanced and flexible serialization capabil-
ities with various degrees of customization. We ended up
choosing the XStream library [40] because it comes bundled
with many converters for nonserializable types and a

ELBAUM ET AL.: CARVING AND REPLAYING DIFFERENTIAL UNIT TEST CASES FROM SYSTEM TEST CASES 37

Fig. 8. Touched-carving projection. Light gray indicates read items and

dark gray indicates written items.

Fig. 9. A filtering strategy based on a caller’s context.

default converter that uses reflection to automatically
capture all object fields, it serializes to XML which is more
compact and easier to read than native Java serialization,
and it has built-in mechanisms to traverse and manage the
storage of the heap which was essential in implementing
the projections. In cases where XStream support was
insufficient, we developed custom extensions such as the
one mentioned before that enables the serialization of static
fields. We anticipate that further extensions and customiza-
tions will accommodate other special object types.

Scope limitations. Our toolset captures a large part of
the program state relevant to a calling context, but it does
not capture all of it. We do not capture public variables
declared by other classes that are not reachable from the
target method class. This implicit projection may cause false
replay differences, but it is necessary to avoid bulky and
inefficient DUTs. In addition, we do not capture fields
declared static final since they cannot be restored during
deserialization. However, we note that such fields are often
initialized to fixed values that are consistent across
executions, limiting their influence in post state differences.

4 EMPIRICAL STUDY

The goal of the study is to assess execution efficiency, fault
detection effectiveness, and robustness of DUTs. We will
perform such assessment through the comparison of system
tests and their corresponding carved unit test cases in the
context of regression testing. Within this context, we are
interested in the following questions:

RQ1. Can DUTs reduce regression testing costs? We would
like to compare the cost of carving and reusing DUTs
versus the costs of utilizing regression test selection
techniques that work on system test cases.

RQ2. What is the fault detection effectiveness of DUTs? This
is important because saving testing costs while reducing
fault detection is rarely an enticing tradeoff.

RQ3. How robust are the DUTs in the presence of software
evolution? We would like to assess the reusability of
DUTs on a real evolving system and examine how
different types of change can affect the robustness and
sensitivity of the carved tests.

4.1 Regression Test Suites

Let P be a program, let P 0 be a modified version of P , and
let T be a test suite developed initially for P . Regression
testing seeks to test P 0. To facilitate regression testing, test
engineers may reuse T to the extent possible. In this study,
we considered five types of test regression techniques, two
that directly reuse with system tests (S) and three that reuse
the DUTs carved from the system test suite (C).

S-retest-All. When P is modified, creating P 0, we simply
reuse all runnable test cases inT to testP 0; this is known as the
retest-all technique [23]. It is often used in industry [25] and as
a control technique in regression testing experiments.

S-selection. The retest all technique can be expensive:
rerunning and rechecking the outcome of all test cases may
require an unacceptable amount of time or human effort.
Regression test selection techniques [5], [10], [24], [33] use
information about P , P 0, and T to select a subset of T , T 0,

with which to test P 0. We utilize the modified entity
technique [10], which selects test cases that exercise
methods, in P , that 1) have been changed in producing P 0

or 2) use variables or structures that have been deleted or
changed in producing P 0.

C-selection-k. Similar in concept to S-selection, this
technique executes all DUTs, carved with a k-bounded
reachable projection, that exercise methods that were
changed in P 0. This technique follows the conjecture that
deeper references are often not required for replay, so
bounding the carving depth may improve the CR efficiency
while maintaining a DUT’s strengths. Within this techni-
que, we explore depth bounding levels of 1, 5, and 1
(unlimited depth which corresponds to the interface reach-
able projection).

C-selection-mayref. Similar to C-selection-k except that it
carves DUTs utilizing a may-reference reachable projection.
This technique is based on the notion that a program change
will mostly affect the parts of the heap reachable by the
method under test or by the methods invoked by the
method under test.

C-selection-touched. Similar to C-selection-k except that
it carves DUTs utilizing a touched-carving projection. This
technique is based on the idea that modifications to the
program are more likely to affect parts of the heap actually
touched in the process of invoking the method under test.
The touched-carving projection here is bounded to a depth
of at least 1 so that the generated DUTs store at least all
fields of primitive types.

4.2 Measures

Regression test selection techniques achieve savings by
reducing the number of test cases that need to be executed
on P 0, thereby reducing the effort required to retest P 0. We
conjecture that CR techniques achieve additional savings by
focusing on some methods of P 0. In other words, while
system test case selection identifies the relevant test cases,
CR adds another orthogonal dimension by identifying what
methods are relevant.

To evaluate these effects, we measure the time to execute
and the time to check the outputs of the test cases in the
original test suite, the selected test suite, and the carved
selected test suites. For a carved test suite, we also measure
the time and space to carve the original DUT test suite. By
default, we applied the default lossless filter on all DUT test
suites so that DUTs with unique prestates are kept for each
program method. One potential cost of regression test
selection is the cost of missing faults that would have been
exposed by the system tests prior to test selection. Similarly,
DUTs may miss faults due to the type of change that render
a DUT unexecutable or to the use of projections aimed at
improving carving efficiency. We will measure fault
detection effectiveness by computing the percentage of faults
found by each test suite. We will also qualify our findings
by analyzing instances where the outcomes of a carved test
case are different from its corresponding system test case.

To evaluate the robustness of the carved test cases in the
presence of program changes, we are interested in consider-
ing three potential outcomes of replaying aDUTxm on unitm0:
1) fault is detected, DUTxm causes m0 to reveal a behavioral
differences due to a fault; 2) false difference is detected, DUTxm

38 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. 1, JANUARY/FEBRUARY 2009

causes m0 to reveal a behavioral change from m to m0 that is
not a fault (not captured by stx); and 3) test is unexecutable,
DUTxm is ill-formed with respect to m0. Tests may be ill-
formed for a variety of reasons (e.g., object protocol changes
internal structure of object changes, invariants changes) and
we refer to the degree to which a test set becomes ill-formed
under a change as its sensitivity to change. We assess
robustness by computing the percentage of carved tests and
program units falling into each one of the outcomes. Since the
robustness of a test case depends on the change, we qualify
robustness by analyzing the relationship between the type of
change and sensitivity of the DUTs.

4.3 Artifact

The artifact we will use to perform this experiment study is
Siena [9]. Siena is an event notification middleware
implemented in Java. This artifact is available for download
in the Subject Infrastructure Repository (SIR) [16], [31]. SIR
provides Siena’s source code, a system-level test suite with
503 unique test cases, multiple versions corresponding to
product releases, and a set of seeded faults in each version
(the authors were not involved in this latest activity). For
this study, we consider Siena’s core components (not the
application included in the package that is built with those
components).

We utilize the five versions of Siena that have seeded
faults that did not generate compilation errors (faults that
generated compilation errors cannot be tested) and that
were exposed by at least one system test case (faults that
were not found by system tests would not affect our
assessment). For brevity, we summarize the most relevant
information to our study in Table 1 and point the reader to
SIR [31] to obtain more details about the process employed
to prepare the Siena artifact for the empirical study. Table 1
provides the number of methods, methods changed
between versions and covered by the system test suite,
system tests covering the changed methods, and faults
included in each version. It also provides the number of
physical source lines of code (SLOC) which was obtained
using the wc utility.

4.4 Study Setup and Design

The activities in this study were performed on an Opteron 250
processor, with 4 Gbytes of RAM, running Linux-Fedora, and
Java 1.5. The overall process consisted of the following steps
as shown in Fig. 10. First, we prepare the base test suites,
System tests,C � k�,C-mayref, andC-touched. The preparation
of the system-level test suite was trivial because it was already

available in the repository. The preparation of the carved
selection suites, required us to run the CR tool to carve all the
DUTs for all the methods in v0 executed by the system tests.
Once the base test suites were generated, we performed test
selection for each version, as described in Section 4.1, to obtain
S-retest-all, S-selection, C-selection-k�, C-selection-mayref, and
C-selection-touched.

Second, we run each generated test suite on the fault-free
versions of Siena to obtain an oracle for each version. For
the system tests, the oracle consisted of the set of outputs
generated by the program. For the carved tests, the oracle
consisted of the method return value and the relevant spost.

Third, we run each test suite on each faulty instance of
each version (some versions contained multiple faults) and
recorded their execution time. We dealt with each fault
instance individually to control for potential masking
effects among faults that might obscure the fault detection
performance of the tests.

Fourth, for each test suite, we compared the outcome of
each test case between the fault-free version (oracle) and the
faulty instances of each version. To compare the system test
outcomes between correct and faulty versions, we used
predefined differencing functions that are part of our
implementation which ignore transient output data (e.g.,
dates, times, and random numbers). For the DUTs, we
performed a similar differencing, but applied to the target
method return values and spost. When the outcome of a
system test case differed between the fault-free and the
faulty version, a fault is said to be found. For the differences
on the carved tests, we performed a deeper analysis to
determine whether the observed behavioral differences
correspond to faults.

Last, we compared all measures introduced in Section 4.2
across the test suites generated by S-retest-all, S-selection,

C-selection-k�, C-selection-mayref, and C-selection-touched.
We then repeated the same steps to collect data for the
same techniques when utilizing an of-the-shelf compression
package to reduce the size of the spre. The results emerging
from this comparison are presented in the next section.

ELBAUM ET AL.: CARVING AND REPLAYING DIFFERENTIAL UNIT TEST CASES FROM SYSTEM TEST CASES 39

TABLE 1
Siena’s Component Attributes

Fig. 10. Study process.

4.5 Results

In this section, we provide the results for each research
question regarding carving and replaying efficiency, fault
detection effectiveness, and robustness and sensitivity of
the DUT suites.

RQ1: Efficiency. We first focus on the efficiency of the
carving process. Although our infrastructure completely
automates carving, this process does consume time and
storage so it is important to assess its efficiency as it might
impact its adoption and scalability. Table 2 summarizes the
time (in minutes) and the size (in megabytes—MB) that it
took to carve and store the complete initial suite carved
from v0 of approximately 20,000 DUTs utilizing the
different CR techniques with and without the use of
compression on the spre and spost.

In the first row of Table 2, we observe that, for Siena,
constraining the carving depth barely affects the carving
time. However, we see that constraining the carving depth
can greatly reduce the required space, as carving at k ¼ 1
requires 47 percent of the space required for carving with
infinite depth. Observe that for depths greater than 1, the
differences in storage space are small due to the rather
“shallow” nature of the artifact (dereference chains with
length greater than 2 are rare in Siena). C-select-mayref
carving required additional time because of the extra static
analysis performed up front, but consumed 55 percent of
the space. Utilizing the touched-carving projection resulted
in space requirements averaging those of k ¼ 1 and k ¼ 1.
Compressing the stored DUTs with the open source utility
bzip provided space savings of 99.7 percent when carving at
unlimited depth, but added 4-8 minutes over the whole test
suite carving process.

The last two rows of Table 2 reveal that 69 percent of the
DUTs carved at k ¼ 1 contained sentinels while only
3 percent of the DUTs carved at a k ¼ 5 contained sentinels.
The differences in sentinels mean that deeper differences in
the heap are more often obscured by using k ¼ 1, which
explains why filtering is more effective on the smaller space
captured by k ¼ 1. The touched suite size and carving costs
resemble those of k ¼ 1, while the mayref size and costs fit
in between those of k ¼ 1 and k ¼ 5.

It is important to note that the carving numbers reported
in Table 2 correspond to the initial carving of the complete
DUT suite—DUTs carved for each of the methods in Siena
from each of 503 system tests that may execute each
method. Carving was performed automatically without the

tester’s participation. As with regular unit tests, during the
evolution of the system, DUTs will be replayed repeatedly
amortizing the initial carving costs, and only a subset of the
DUTs will need to be recarved (e.g., recarving the DUTs
affected by the changes in v6 would only require 2 percent
of the original carving time). Recarving will be necessary
when it is determined that changes in the program may
affect a DUT’s relevant prestate.

We now proceed to analyze replay efficiency. Replay
efficiency is particularly important since, as with regular
units tests, it is likely that a carved DUT will be repeatedly
replayed as a method evolves while preserving its original
intended behavior.

Fig. 11 shows the time in minutes to execute the system
regression test suites and to replay the C-selection-k1 suite
(the most expensive of all carved suites). Each observation
corresponds to the replay time of each generated test suite
under each version, while the lines joining observations are
just meant to assist in the interpretation.

Replaying the C-selection-k1 provides gains of at least an
order of magnitude over the S-select suites, averaging less
than a minute per version. On average, replaying carved
suites take 2 percent of the time required by S-retest-all, and
3 percent of the time required by S-select. Utilizing C-
selection-k1-comp incurs a large overhead to uncompress
the DUTs content, rendering its application unlikely in spite
of the storage savings. The test suite resulting from the
S-retest-all technique consistently averages 43 minutes per
version. The test suites resulting from S-select averages
28 minutes across versions, with savings over S-retest-all
ranging from barely a minute in v7 to a maximum of
41 minutes in v6.1

We also measured the diffing time required by all
techniques. For the system test suites the diffing times
were consistently less than a minute, and for the

40 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. 1, JANUARY/FEBRUARY 2009

TABLE 2
Carving Times and Sizes to Generate Initial DUT Suites

1. Factors that affect the efficiency of this technique are not within the
scope of this paper but can be found in [18].

Fig. 11. Test suite execution times for system test suites and

C-selection-k1 (with and without compression).

C-selection� suites the time never exceeded 15 seconds,
making both negligible compared with the replay time.

Fig. 12 summarizes the replay execution times for some
of the other test suites we generated. We find that, on
average, all the C-selection� suites (excluding the one with
compression) replay execution time was less than 1 minute.
They all took less than 10 seconds to replay v6 and up to
96 seconds to replay the DUTs selected for v1. Constraining
the carving depth with k ¼ 1 consistently reduced replay
time (over percent 50 reduction in v5). Similarly, constrain-
ing the carving space through either C-selection-mayref or
C-selection-touched reduced the replay time in some versions
(almost 20 percent reduction in v1).

RQ2: Fault detection effectiveness. Most of the test
suites carved from S-selection, (with k � 1), C-selection-
mayref, and C-selection-touched detected as many faults as
the S-retest-all technique. This indicates that a DUT test
suite can be as effective as a system test suite at detecting
faults, even when using aggressive projections.

It is worth noting, however, that computing fault
detection effectiveness over a whole DUT suite overlooks
the fact that, for some system tests, their corresponding
carved DUTs may have lost or gained fault detection
effectiveness. We conjecture that this is a likely situation
with our artifact because many of the faults are detected by

multiple system tests, so there were many carved DUTs that
could have detected each fault. To address this situation, we
perform an effectiveness analysis at the test case level. For
each carving technique we compute: 1) PP, the percentage
of passing selected system tests (selected utilizing
S-Selection) that have all corresponding DUTs passing,
and 2) FF, the percentage of failing system tests that have at
least one corresponding failing DUT. Table 3 presents the
PP and FF values for the suites under all faults in each
version. In general, we observe that most PP and FF values
are over 90 percent indicating that DUTs carved from a
system test case tend to preserve much of their effective-
ness. But, we can also identify some interesting exceptions.
For example, independent of the DUT suite, for v7 : f1 (the
first fault in version v7), only 24 percent of the passing
system tests had all their associated DUTs passing. The rest
of the system tests had at least one DUT that detected a
behavioral difference that was not detected by the system
test case oracle because it did not propagate to the output
(the level at which the system test case oracle operated).
This is one example where a DUT is more powerful than its
corresponding system test.

Another interesting instance is FF for C-selection-k1, v5,
where we observed that replaying the carved test suite did
not detect any of the behavioral differences exhibited by the
selected system test cases. Upon further examination, we
found that the changed method in v5 required access to
references in the heap deeper than k ¼ 1 which were not
satisfied by the captured prestate of the C-selection-k1 suite,
therefore resulting in a SentinelAccessException.
Because of this, no poststates were stored for the method
and the fault goes undetected. The other carved test suites
on v5 did detect the fault since they either carved deeper
prestates or, in the case of the touched-carving projection
test suite, carved the parts of the prestates that were
necessary for the methods under test. Still, for the other
suites on v5, 3 out of the 300 failing system tests did not
have any corresponding DUT on the changed methods
failing (99 percent). We observed a similar situation in v7 :
f2 where 18 out of 203 DUTs (9 percent) did not expose
behavioral differences even though the corresponding
system tests failed. When we analyzed the reasons for this
reduction in FF, we discovered that in both cases the tool
did not carve in v0 the prestate for one of the changed
methods because the system test case did not reach them;

ELBAUM ET AL.: CARVING AND REPLAYING DIFFERENTIAL UNIT TEST CASES FROM SYSTEM TEST CASES 41

Fig. 12. Test suite execution times for the C-selection-k� suites.

TABLE 3
Fault Detection Effectiveness

call graphs generated for the system test cases indicate that
the faulty methods were not invoked during the execution
of some of the system test cases on v0 of Siena. Changes in
the code structure (e.g., addition of a method call), however,
made the system test cases reach those changed methods
(and expose a fault) in later versions. In both circumstances,
improved DUTs that would have resulted in 100 percent FF
could have been generated by recarving the test cases in
later versions (carve from vi instead of v0 to replay in viþ1).
More generally, these observations point out again for the
need for mechanisms to detect changes in the code that
should trigger recarving.

RQ3: Robustness and sensitivity. We examined how
DUTs obtained through C-selection-k1 are quite fragile in
terms of their executability, and how certain code changes
may make a method reach a new part of the heap that was
not originally carved. We further evaluate the robustness
and sensitivity of DUTs by comparing their performance in
the presence of methods that changed but are not faulty and
in the presence of methods that changed and are indeed
faulty. We performed such detailed comparison on the
suites generated with C-selection-k1. Table 4 summarizes
the findings and we now briefly discuss distinct instances of
the scenarios we found.

In both faulty instances of v7, the version with the most
methods changed (10), none of the DUTs revealing
behavioral differences were found by methods other than
the faulty ones. This is clearly an ideal situation, which is
also present in v6. V 1 : f3 represents perhaps a more
common case where 15 percent of the DUTs going through
nonfaulty changed methods detected differences, but
100 percent of the DUTs traversing faulty methods actually
revealed a poststate difference. V 1 : f2 presents a scenario
in which carving generates more behavioral differences for
the nonfaulty changed methods than for the faulty changed
methods, showing that even for correct changes the number
of affected DUTs may be large (13 out of 65). In this case, the
implementation change was such that the method switched
the order of division and multiplication operations invol-
ving a variable which was eventually returned. Because of
this, there was a difference in the return value, which was
detected as a behavioral difference, and would probably be
detected by other forms of unit tests as well.

It is worth noting that the differencing functions offer an
opportunity to control this problem. For example, a more
relaxed differencing mechanism focused on just return
values could have detected the fault while reducing the

number of false differences if the fault manifests itself in the
return value. Mechanisms to select and appropriately
combine these differencing functions will be important for
the robustness and sensitivity of DUTs. In addition, we
anticipate that as the CR components of the framework
become parts of an IDE, the additional change information
available in the developer’s environment could help to
reduce the number of false positives. For example, code
modifications due to refactoring that do not affect the target
unit’s interface would be expected to retain the same
behavior. However, changes that can be mapped to the bug
repository would be expected to affect the unit’s behavior.

4.6 Targeted Case Studies

The previous study addressed the stated research questions
with respect to Siena, and we believe the findings generalize
to similar artifacts. Still, we realize that our study suffers
from threats to validity. Specifically, the selected artifact
provided limited exposure to CR in the presence of deeper
heap structures, extensive software changes, and high
number of methods invocations. We have started to address
those threats to the validity of our findings by investigating
the performance of CR in the presence of such settings.
More specifically, we have studied the performance of CR
on two other artifacts, NanoXML and Jtopas [16], that
provide exposure to more complex heap structures, high-
frequency executions sequences, and extensive changes
between versions. These studies confirm our previous
findings, but also show that the performance of the different
carving strategies can vary significantly in programs with
complex heap structures, that the Replay AnomalyHandler
can enhance DUTs reuse and potential for fault detection
with affordable replay costs, and that the clustering
projection can be very effective to reduce the number of
DUTs on high-frequency methods. Due to space constraints,
the detailed settings and results are omitted here but
available in a technical report [12].

5 RELATED WORK

Our work was inspired by Weide’s notion of modular
testing as a means to evaluate the modular reasoning
property of a piece of software [37]. Although Weide’s focus
was on the evaluation of the fragility of modular reasoning,
he raised some important questions regarding the potential
applicability of what he called a “modular regression
technique” that led to our work.

Within the context of regression testing, our approach is
similar to Binkley’s semantic guided regression testing in
that it aims to reduce testing costs by running a subset of
the program [5], [6]. Binkley’s technique utilizes static
slicing to identify potential semantic differences between
two versions of a program. He also presents an algorithm to
identify the system tests that must be run on the slices
resulting from the differences between the program ver-
sions. The fundamental distinction between this and our
approach is that we do not run system-level tests, but rather
smaller and more focused unit tests. Another important
distinction is that our targets are not the semantic
differences between versions, but rather methods in the
program.

42 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. 1, JANUARY/FEBRUARY 2009

TABLE 4
Robustness and Sensitivity

The preliminary results from our original test carving
prototype [29] evidenced the potential of carved tests to
improve the efficiency and the focus of a large system test
suite, identified challenges to scale up the approach, and
pinpoint scenarios under which the carved test cases would
and would not perform well. We have built on that work by
presenting a generic framework for differential carving,
extending the type of analysis we performed to make the
approach more scalable, and by developing a full set of
tools that can enable us to explore different techniques on
various programs.

We are aware of other research efforts related to the
notion of test carving. First, Orso and Kennedy’s and Clause
et al.’s notion of selective capture and replay of program
executions [26]. Orso and Kennedy’s technique [26] aims to
selectively capture and replay events and interactions
between the selected program components and the rest of
the application. The technique captures a simplified state
representation composed of the object IDs, types, and scalar
values directly utilized by the selected program compo-
nents to enable replay. The approach is similar to carving
with a touched projection with the difference that simplified
heap structures are used to represent the program state.

Second, the test factoring approach introduced by Saff
and Ernst takes a similar approach to Orso’s with the
creation of mock objects that serve to create the scaffolding
to support the execution of the test unit [35]. The same
group introduced a tool set for a fully featured Java
execution environments that can handle many of the subtle
interactions present in this programming language (e.g.,
callbacks, arrays, and native methods) [34]. Saff et al.’s work
[34] carves a method test case by recording the sequence of
calls that can influence the method, the sequence of calls
made by the method, and the return values and unit state
side effects of those calls. In our framework, this would
amount to calculating �� such that sð��Þ ¼ spre for the method
of interest and then calculating summarizing traces ��calli
that reflect the return value and side effects for each call out
of the method and carving sprei , the relevant prestate for
each call. During replay, the same sequence of calls with the
same parameters is expected—any deviation results in a
report of a difference during replay. In our framework, we
would identify the points at which the n calls out of the
method occur as poststate locations to define a DUT of the
form ð��; ðspre1

; . . . ; sprenÞÞ.
The approaches introduced by Orso et al. and Saff et al.

are action-based approaches that capture the interactions
between the target unit and its context and then build the
scaffolding to replay just those interactions. Hence, they do
not incur in costs associated with capturing and storing the
system state for each targeted unit. On the other hand, these
approaches are likely to generate inefficient unit tests in the
presence of long-running system tests and they may
generate tests that are too sensitive to simple changes that
do not effect meaning of the unit (e.g., changing the order of
independent method calls). Saff et al. have identified this
issue and propose to analyze the life span of the factored
test cases across sequences of method modifications [34].
This is a critical factor in judging the cost-effectiveness of
CR testing, and we have started to study it in Section 4.5. In

terms of our framework, both of these approaches would be
considered action-based CR approaches. We have pre-
sented, what is to the best of our knowledge, the first state-
based approach to CR testing.

More recently, Xu et al. have proposed a hybrid approach
that mixes action based with state based to enhance replay
efficiency [41]. The approach only captures the set of runtime
values required to reach a checkpoint and the values that
could potentially be required to complete execution after the
checkpoint. The set of runtime values required is obtained by
computing the slice of the program required to generate those
values (similar to action based). The set of values that could be
required to complete execution is computed by walking the
heap (similar to state based). In our framework, such a test
could be defined by calculating traces ��controli leading to
checkpoint spre and a number of states sposti corresponding to
the method return points. This would result in a DUT of the
form ðð��1; . . . ; ��jÞ; spre; ðspost1 ; . . . ; sposthÞÞ, where j is the
number of relevant subtraces that lead to the checkpoint
stack and h is the number of states that affect the
postcheckpoint program execution.

All of these related efforts have shown their feasibility in
terms of being able to replay tests and Saff et al.’s and Xu
et al.’s approaches have provided initial evidence that they
can save time and resources under several scenarios. None
of these approaches, however, has been evaluated in terms
of its fault detection effectiveness which ultimately deter-
mines the value of the carved tests, or in the context of
regression testing.

Our work also relates to efforts aimed at developing unit
test cases. Several frameworks grouped under the umbrella
of Xunit have been developed to support software
engineers in the development of unit tests. JUnit, for
example, is a popular framework for the Java programming
language that lets programmers attach testing code to their
classes to validate their behavior [19].

There are also multiple approaches that automate, to
different degrees, the generation of unit tests. For example,
commercial tools such as Jtest, developed by a company
called Parasoft, develop unit test cases by analyzing method
signatures and selecting test cases that increase some
coverage criteria [22]. Some of these tools aim to assess
software robustness (e.g., whether an exception is thrown
[13]). Others utilize some type of specification such as pre
and postconditions or operational abstractions, to guide the
test case generation and actually check whether the test
outcome meets the expectation results [7], [11], [27], [39].
Interestingly enough, a part of JTest called JTest Tracer can
be used to monitor a deployed application in real time and
capture inputs to generate realistic JUnit test cases [22], a
process somewhat similar to carving.

Although carving also aims to generate unit test cases,
the approach we propose is different from previous unit test
case generation mechanisms since it consists of the
projection of a system test case onto the targeted software
unit. As such, we expect for carved unit tests to retain some
of the interesting interactions exposed by systems tests. In
general, such interactions are hard to design and are rarely
included in regular unit test cases.

ELBAUM ET AL.: CARVING AND REPLAYING DIFFERENTIAL UNIT TEST CASES FROM SYSTEM TEST CASES 43

As stated, the poststate differencing functions that
regulate the detection of differences between encodings of
unit behavior belongs to a larger body of testing work on
differential-based oracles. For example, the work of
Weyuker [38] on the development of pseudo-oracles,
Jaramillo et al. [21] on using comparisons to check for
optimization induced errors in compilers, or the compar-
ison of program spectra [30] are instances of utilizing
differencing-type oracles at the system or subsystem level.
When focusing at the unit level of object-oriented programs,
as we are doing, Binder suggests the term “concrete state”
oracles, which aim to compare the value of all the unit’s
attributes against what is expected [4]. Briand et al. referred
to this type of oracle as a “precise” oracle because it was the
most accurate one employed in their studies [8]. Overall, the
notion of testing being fundamentally differential has long
been understood [38], since the pseudo-oracles against which
systems are judged correct are themselves subject to error.
Thus, the question we aimed to answer is not whether our
CR method judges a system correct or incorrect, but rather
whether it is capable of cost-effectively detecting differences
between encodings of system behavior that developers can
easily mine to judge whether the difference reflects an error.

6 CONCLUSION

We have presented a general framework for automatically
carving and replaying DUTs. The framework accommo-
dates two types of state representation, and incorporates
sophisticated projection, anomaly handling, and differen-
cing strategies that can be instantiated in various ways to
suit distinct trade-offs. We have implemented a state-based
instance of the framework that mitigates testing costs
through a family of reachability-based projections, that
enhances DUT robustness through replay anomaly hand-
lers, and that can adjust the sensitivity of DUTs through
differencing functions.

Our evaluation of this implementation on Siena,
NanoXML, and JTopas provides evidence that DUTs can
be generated automatically from system tests, can provide
efficiency gains of orders of magnitude while retaining most of
the effectiveness of system tests in a regression testing context,
and can be robust to program changes and scale to large and
complex heap structures.

The experiences gained while instantiating and assessing
the framework suggest several directions for future work.
First, we will perform further studies not only to confirm
our findings on other artifacts under similar settings but
also to compare DUTs with traditional unit tests developed
by software engineers. We conjecture that software en-
gineers develop rather shallow unit tests and that we can
effectively complement those with DUTs that expose the
target units to more complex execution settings.

A longer-term direction is the exploration of other
transformation techniques that utilize our current test
representation. For example, we are investigating auto-
mated mechanisms that combine multiple DUTs to create
an aggregated DUT for a larger program unit such as a class.
This could be achieved by clustering multiple DUTs based
on the identity of the receiver object, effectively transferring
the effects of methods on the receiver object throughout the

sequence, achieving a kind of interaction testing between

calls. Ultimately, we envision a family of automated

transformations of testing resources where carving is just

one of those transformations.

ACKNOWLEDGMENTS

This work was supported in part by the US National Science

Foundation through CAREER award 0347518, CCF awards

0429149 and 0541263, CRI award 0454203, an IBM Eclipse

Innovation Award, the Lockheed Martin Software Technol-

ogy Initiative, and by the US Army Resarch Office through

DURIP award W911NF-04-1-0104. The authors would like

to thank B. Weide for inspiring this effort, S. Reddy for the

feasibility exploration she provided through her thesis, and

J. Dokulil for his effort in the initial implementation of the

CR tool. They would also like to thank V. Ranganath for

supporting their use of Indus and O. Tkachuk for

implementing preliminary versions of the static analysis.

REFERENCES

[1] J. Bach, “Useful Features of a Test Automation System (Part III),”
Testing Techniques Newsletter, Oct. 1996.

[2] K. Beck, Extreme Programming Explained: Embrace Change, first ed.
Addison-Wesley Professional, Oct. 1999.

[3] K. Beck, Test Driven Development: By Example. Addison Wesley
Longman, Nov. 2002.

[4] R. Binder, Testing Object-Oriented Systems: Models, Patterns, and
Tools, chapter 18, Object Technologies, pp. 943-951, first ed.
Addison Wesley, Oct. 1999.

[5] D. Binkley, “Semantics Guided Regression Test Cost Reduction,”
IEEE Trans. Software Eng., vol. 23, no. 8, pp. 498-516, Aug. 1997.

[6] D. Binkley, R. Capellini, L. Ross Raszewski, and C. Smith, “An
Implementation of and Experiment with Semantic Differencing,”
Proc. IEEE Int’l Conf. Software Maintenance, pp. 82-91, Nov. 2001.

[7] C. Boyapati, S. Khurshid, and D. Marinov, “Korat: Automated
Testing Based on Java Predicates,” Proc. Int’l Symp. Software
Testing and Analysis, pp. 123-133, July 2002.

[8] L.C. Briand, M. Di Penta, and Y. Labiche, “Assessing and
Improving State-Based Class Testing: A Series of Experiments,”
IEEE Trans. Software Eng., vol. 30, no. 11, pp. 770-793, Nov. 2004.

[9] A. Carzaniga, D. Rosenblum, and A. Wolf, “Achieving Scalability
and Expressiveness in an Internet-Scale Event Notification
Service,” Proc. 19th Ann. ACM Symp. Principles of Distributed
Computing, pp. 219-227, July 2000.

[10] Y.-F. Chen, D.S. Rosenblum, and K.-P. Vo, “TestTube: A System
for Selective Regression Testing,” Proc. 16th Int’l Conf. Software
Eng., pp. 211-220, May 1994.

[11] Y. Cheon and G.T. Leavens, “A Simple and Practical Approach to
Unit Testing: The JML and JUnit,” Proc. 16th European Conf. Object-
Oriented Programming, pp. 231-255, June 2002.

[12] H.N. Chin, S. Elbaum, M.B. Dwyer, and M. Jorde, “DUTs:
Targeted Case Studies,” Technical Report TR-UNL-CSE-2007-
0005, Univ. of Nebraska, Aug. 2008.

[13] C. Csallner and Y. Smaragdakis, “Jcrasher: An Automatic
Robustness Tester for Java,” Software Practice and Experience,
vol. 34, no. 11, pp. 1025-1050, Sept. 2004.

[14] M. Dahm and J. van Zyl, Byte Code Engineering Library, http://
jakarta.apache.org/bcel/, June 2002.

[15] S. Dieckmann and U. Holzle, “A Study of the Allocation Behavior
of the Specjvm98 Java Benchmark,” Proc. 13th European Conf.
Object-Oriented Programming, pp. 92-115, June 1999.

[16] H. Do, S.G. Elbaum, and G. Rothermel, “Supporting Controlled
Experimentation with Testing Techniques: An Infrastructure and
Its Potential Impact,” Empirical Software Eng.: An Int’l J., vol. 10,
no. 4, pp. 405-435, Oct. 2005.

[17] S. Elbaum, H. Nee Chin, M.B. Dwyer, and J. Dokulil, “Carving
Differential Unit Test Cases from System Test Cases,” Proc. ACM
SIGSOFT Symp. Foundations of Software Eng., pp. 253-264, Nov.
2006.

44 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. 1, JANUARY/FEBRUARY 2009

[18] S. Elbaum, P. Kallakuri, A.G. Malishevsky, G. Rothermel, and S.
Kanduri, “Understanding the Effects of Changes on the Cost-
Effectiveness of Regression Testing Techniques,” J. Software
Testing, Verification, and Reliability, vol. 13, no. 2, pp. 65-83, June
2003.

[19] E. Gamma and K. Beck, JUnit, http://sourceforge.net/projects/
junit, Dec. 2005.

[20] R. Hildebrandt and A. Zeller, “Simplifying Failure-Inducing
Input,” Proc. Int’l Symp. Software Testing and Analysis, pp. 135-
145, Aug. 2000.

[21] C. Jaramillo, R. Gupta, and M.L. Soffa, “Comparison Checking:
An Approach to Avoid Debugging of Optimized Code,” Proc.
European Software Eng. Conf./Foundations of Software Eng., pp. 268-
284, Sept. 1999.

[22] JTest, Jtest Product Overview, http://www.parasoft.com/jsp/
products/home.jsp?product=Jtest, Oct. 2005.

[23] H.K.N. Leung and L. White, “Insights into Regression Testing,”
Proc. IEEE Int’l Conf. Software Maintenance, pp. 60-69, Oct. 1989.

[24] H.K.N. Leung and L. White, “A Study of Integration Testing and
Software Regression at the Integration Level,” Proc. IEEE Int’l
Conf. Software Maintenance, pp. 290-300, Nov. 1990.

[25] A.K. Onoma, W.-T. Tsai, M. Poonawala, and H. Suganuma,
“Regression Testing in an Industrial Environment,” Comm. ACM,
vol. 41, no. 5, pp. 81-86, May 1998.

[26] A. Orso and B. Kennedy, “Selective Capture and Replay of
Program Executions,” Proc. Third Int’l Workshop Dynamic Analysis,
May 2005.

[27] C. Pacheco and M.D. Ernst, “Eclat: Automatic Generation and
Classification of Test Inputs,” Proc. 19th European Conf. Object-
Oriented Programming, pp. 504-527, July 2005.

[28] V.P. Ranganath and J. Hatcliff, “Pruning Interference and Ready
Dependence for Slicing Concurrent Java Programs,” Proc. 13th
Int’l Conf. Compiler Construction, pp. 39-56, Apr. 2004.

[29] S.K. Reddy, “Carving Module Test Cases from System Test Cases:
An Application to Regression Testing,” master’s thesis, Dept. of
Computer Science and Eng., Univ. of Nebraska, July 2004.

[30] T. Reps, T. Ball, M. Das, and J. Larus, “The Use of Program
Profiling for Software Maintenance with Applications to the Year
2000 Problem,” Proc. European Software Eng. Conf./Foundations of
Software Eng.), pp. 432-449, Sept. 1997.

[31] G. Rothermel, S. Elbaum, and H. Do, Software Infrastructure
Repository, http://cse.unl.edu/ galileo/php/sir/index.php, Jan.
2006.

[32] G. Rothermel, S. Elbaum, A.G. Malishevsky, P. Kallakuri, and X.
Qiu, “On Test Suite Composition and Cost-Effective Regression
Testing,” ACM Trans. Software Eng. and Methodologies, vol. 13,
no. 3, pp. 277-331, July 2004.

[33] G. Rothermel and M.J. Harrold, “Analyzing Regression Test
Selection Techniques,” IEEE Trans. Software Eng., vol. 22, no. 8,
pp. 529-551, Aug. 1996.

[34] D. Saff, S. Artzi, J. Perkins, and M. Ernst, “Automated Test
Factoring for Java,” Proc. 20th Ann. Int’l Conf. Automated Software
Eng., pp. 114-123, Nov. 2005.

[35] D. Saff and M. Ernst, “Automatic Mock Object Creation for Test
Factoring,” Proc. SIGPLAN/SIGSOFT Workshop Program Analysis
for Software Tools and Eng., pp. 49-51, June 2004.

[36] D. Saff and M.D. Ernst, “An Experimental Evaluation of
Continuous Testing During Development,” Proc. Int’l Symp.
Software Testing and Analysis, pp. 76-85, July 2004.

[37] B. Weide, “Modular Regression Testing: Connections to Compo-
nent-Based Software,” Proc. Fourth ICSE Workshop Component-
Based Software Engineering, pp. 82-91, May 2001.

[38] E.J. Weyuker, “On Testing Non-Testable Programs,” The Computer
J., vol. 25, no. 4, pp. 465-470, Nov. 1982.

[39] T. Xie and D. Notkin, “Tool-Assisted Unit-Test Generation and
Selection Based on Operational Abstractions,” Automated Software
Eng. J., July 2006.

[40] Xstream—1.1.2, XStream, http://xstream.codehaus.org, Aug.
2005.

[41] G. Xu, A. Rountev, Y. Tang, and F. Qin, “Efficient Checkpointing
of Java Software Using Context-Sensitive Capture and Replay,”
Proc. ACM SIGSOFT Symp. Foundations of Software Eng., pp. 85-94,
Oct. 2007.

Sebastian Elbaum received the PhD degree in
computer science from the University of Idaho
and the degree in systems engineering from the
Universidad Catolica de Cordoba, Argentina. He
is an associate professor at the University of
Nebraska, Lincoln. His research interests in-
clude program analysis and testing, deployed
software analysis, user software engineering,
and empirical software engineering. He received
the US National Science Foundation Faculty

Early CAREER Award in 2004 for his research on the utilization of field
data to test highly configurable and rapidly evolving pervasive systems.
He was the program chair for the ACM International Symposium of
Software Testing and Analysis (2007) and a program cochair for the
IEEE Symposium of Empirical Software Engineering and Measurement
(2008). He has served as a program committee member for several
international conferences, including the International Conference on
Software Engineering and the Symposium on Foundations of Software
Engineering. He is a member of the IEEE.

Hui Nee Chin received the BS degree and the
MS degree in computer science from the
University of Nebraska at Lincoln (UNL) in
2005 and 2007, respectively. She is a software
engineer in the Macintosh Business Unit at
Microsoft Corp. She is an alumna of the
Laboratory for Empirically-based Software
Quality Research and Development (ES-
QuaReD) at UNL. Her research interests
include software testing and analysis, particu-

larly automatic test case generation.

Matthew B. Dwyer received the BS degree in
electrical engineering from the University of
Rochester in 1985, the MS degree in computer
science from the University of Massachusetts at
Boston, and the PhD degree from the University
of Massachusetts at Amherst. He is the Henson
Professor of Software Engineering in the De-
partment of Computer Science and Engineering
at the University of Nebraska, Lincoln. He
worked for six years as a senior engineer with

Intermetrics Inc., developing compilers and software for safety-critical
embedded systems. His research interests include software analysis,
verification, and testing. He has served as a program chair for the SPIN
Workshop on Model Checking of Software (2001), the ACM Workshop
on Program Analysis for Software Tools and Engineering (2002), the
ACM Symposium on Foundations of Software Engineering (2004), the
ETAPS conference on Fundamental Approaches to Software Engineer-
ing (2007), and the International Conference on Software Engineering
(2008). He is an ACM distinguished scientist. He is a member of the
IEEE and the IEEE Computer Society.

Matthew Jorde received the BS degree and the
MS degree in computer science from the
University of Nebraska at Lincoln (UNL) in
2006 and 2008, respectively. He is a technical
analyst at Applied Underwriters, Foster City,
California. He is an alumnus of the Jeffrey S.
Raikes School of Computer Science and Man-
agement and of the Laboratory for Empirically-
based Software Quality Research and Develop-
ment (ESQuaReD) at UNL. His research inter-

ests include software testing and analysis.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

ELBAUM ET AL.: CARVING AND REPLAYING DIFFERENTIAL UNIT TEST CASES FROM SYSTEM TEST CASES 45

